
Contents lists available at ScienceDirect

Journal of Chemical Neuroanatomy

journal homepage: www.elsevier.com/locate/jchemneu

Review

DNA sequencing in high-throughput neuroanatomy

Justus M Kebschull
Stanford University, Stanford, CA, United States

A R T I C L E I N F O

Keywords:
projection mapping
connectivity
tracing
MAPseq
BARseq
DNA sequencing
mesoscale connectivity
barcodes
in situ sequencing
Rosetta brain

A B S T R A C T

Mapping brain connectivity at single cell resolution is critical for understanding brain structure. For decades,
such mapping has been principally approached with microscopy techniques, aiming to visualize neurons and
their connections. However, these techniques are often very labor intensive and do not scale well to the com-
plexity of mammalian brains. We recently leveraged the speed and parallelization of DNA sequencing to map the
projections of thousands of single neurons in single experiments, and to map cortical mesoscale connectivity in
single mice. Here, I review the state of sequencing-based neuroanatomy, and discuss future directions in synaptic
connectivity mapping and comparative connectomics.

1. Introduction

Brains are complex arrangements of millions of neurons that vary in
their physiological responses to stimuli, gene expression patterns, de-
velopmental origin and connectivity patterns. Averaging over neural
diversity can produce misleading results and leaves us with an in-
complete picture of brain function. Recently, great strides have been
made in measuring neuronal activity (e.g. refs Jun et al., 2017; Stringer
et al., 2018; Ahrens et al., 2013), gene expression (e.g. refs Zeisel et al.,
2018; Saunders et al., 2018; Tasic et al., 2017) and even the develop-
mental history (e.g. refs Kalhor et al., 2018; Kalhor et al., 2016;
McKenna et al., 2016; Frieda et al., 2016; Raj et al., 2018; Alemany
et al., 2018; Spanjaard et al., 2018) of large numbers of individual
neurons. In contrast, exploring the heterogeneity of neuronal con-
nectivity patterns remains difficult, as traditional neuroanatomical ap-
proaches face a steep trade-off between throughput and resolution. To
overcome this problem, we introduced the use of DNA sequencing and
cellular barcoding to develop high-throughput, high-resolution neu-
roanatomical tracing techniques (Zador et al., 2012; Kebschull et al.,
2016a).

In this review, I will elucidate the benefits of sequencing-based
neuroanatomy over traditional approaches, and will detail the current
state of available methods. Finally, I will discuss future applications of
DNA sequencing in producing fully annotated “Rosetta brains,” that
integrate connectional, functional and transcriptomic measures of the
same cells (Marblestone et al., 2014), and in comparative connectomics
(van den Heuvel et al., 2016).

2. Why sequencing?

Brain mapping by microscopy relies on the direct visualization of
neurons and their connections. The conceptually simplest approach is
the imaging of all cells in a tissue volume at nanometer resolution,
followed by reconstruction of the imaged cells. This approach is being
used with great success in electron microscopy (EM) based mapping of
local circuits (see e.g. refs (Zheng et al., 2018; Kasthuri et al., 2015;
White et al., 1986)) and is bolstered by significant advances in auto-
matic circuit reconstruction. Expanding such a label free approach be-
yond local circuits however faces significant challenges in sample
handling, as hundreds of thousands of EM images need to be taking in
succession, with very low tolerance for error. Dedicated and highly
specialized efforts are underway that address these challenges (see for
example IARPA’s MICrONS project, aiming to reconstruct 1mm3 of
mouse cortex). However, EM connectomics at the scale of mammalian
circuits remain out of reach for the average researcher.

As a result, long-range connectivity mapping today generally relies
on the use of labels, such as a fluorescent dye or protein. These labels
make specific neurons and their processes stand out from the rest of the
brain (see for example refs (Kita and Kita, 2012; Ghosh et al., 2012;
Economo et al., 2016; Gong et al., 2016a)) and thus allow imaging at
lower resolution.

Label-based approaches, however, face a steep tradeoff between
mapping resolution and throughput. Currently, only a small number of
spectrally distinguishable labels are available, limiting the number of
independent labels per brain to approximately four. Combinatorial use
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of a small number of different fluorophores has been proposed as a way
to greatly expand the number of available labels in brainbow and related
approaches (Livet et al., 2007; Cai et al., 2013). Here cells are labeled
with composite ‘colors’ by expressing different ratios of three fluor-
ophores in a process akin to how colors are produced by a rgb computer
display. In practice, however, it has proven challenging to reliably read
out different color combinations in axons – where individual fluor-
ophores are sparse – limiting the utility of this approach for brain
mapping. As a result, currently only approximately ten, and often closer
to three colors can be used as independent labels in the same brain. A
mouse brain, in contrast, contains 100 million neurons (Herculano-
Houzel et al., 2006) and even single brain areas, such as auditory
cortex, still contain 300,000 neurons (Herculano-Houzel et al., 2013).

The gold standard in single-neuron resolution brain mapping is to
label a single neuron per brain, either by viral infection (e.g. ref (Ghosh
et al., 2012)) or single neuron electroporation (e.g. ref (Han et al.,
2018)), and to image its entire axonal tree (Kita and Kita, 2012; Ghosh
et al., 2012). This approach provides definitive single cell resolution
and high spatial resolution. As only a single neuron is traced per animal,
throughput however is low, and collecting sufficient data to compre-
hensively describe the diversity of projection patterns in a brain area is
often prohibitively labor intensive (Han et al., 2018). Recent techno-
logical advances now allow volumetric imaging of entire mammalian
brains at high resolution, and make it possible to trace dozens of in-
dividual, identically labeled single neurons per brain (Economo et al.,
2016; Gong et al., 2016b; Winnubst et al., 2019). In particular, the
MouseLight project at Janelia has recently released an impressive da-
taset of 1000 reconstructed mouse neurons scattered across the brain
(Winnubst et al., 2019). Collecting large numbers of single neuron
projection patterns from individual areas of interest however remains
challenging, requiring many experiments, and specialized, expensive
equipment.

Faced with the low throughput of single neuron tracing, the ma-
jority of brain mapping today is done at the coarser resolution of brain
areas. Here, the number of available colors is a good match to the often
small number of brain areas of interest. Even comprehensive area-to-
area maps can be produced in concerted efforts, tracing the projections
of one or a few brain areas per animal (Oh et al., 2014; Zingg et al.,
2014; Harris et al., 2018). Such bulk projection tracing, however, ob-
scures the underlying and often diverse projection patterns of single
neurons. Insight into information routing and cross-area computations
is limited. This problem can be partially addressed by probing the
collateralization patterns of individual neurons using several retrograde
tracers of different colors, or restricting bulk tracing to projection de-
fined subpopulations of neurons (see Box 1; Table 1). Again, however,
the resolution is limited by the low number of labels, as well as the
efficiencies of each retrograde labeling step.

To transform single-neuron resolution brain mapping into a high-
throughput method broadly accessible to the research community, we
recently proposed to draw on cellular barcoding strategies (Kebschull
and Zador, 2018) to multiplex single neuron tracing. Cellular barcoding
uses short nucleic acid sequences, “barcodes,” rather than colors to
uniquely label cells (Zador et al., 2012; Kebschull et al., 2016a). The
key advantage of barcode labeling is that even short sequences have
extremely high diversity. A stretch of 30 random nucleotides, for ex-
ample, can take any of 430 ≈1018 different sequences. In principle, a
30-nt barcode therefore provides enough labels to uniquely label every
one of the 100 million neurons in the mouse brain 10 billion times over
(Fig. 1). Importantly, each of these sequences can be reliably, rapidly
and inexpensively read out and quantified by readily accessible high-
throughput sequencing technologies (Hayden, 2014).

3. MAPseq: a sequencing-based method for high-throughput
single neuron tracing

Multiplexed Analysis of Projections by sequencing (MAPseq) uses

cellular barcoding and a DNA sequencing-based readout to map the
area-to-area projections of thousands of individual neurons in parallel
in a single experiment (Kebschull et al., 2016a). For MAPseq, we first
produce a complex mixture of barcoded Sindbis viruses (Kebschull
et al., 2016b), in which each virus particle encodes one of millions of
different barcode sequences (Fig. 2a). We then inject this mixture into a
brain area, at concentrations such that each infected neuron takes up
roughly one virus particle (Fig. 2b). Infected neurons are thus labeled
with the barcode of the infecting virus particle. Within the cell, bar-
codes are amplified through transcription. Alongside the barcode
mRNA, the virus expresses an engineered presynaptic protein, MAPP-
nλ that is based on pre-mGRASP (Kim et al., 2011). MAPP-nλ contains
the viral RNA binding domain nλ in its intracellular tail that specifically
binds to a series of four boxB hairpins included in the barcode mRNA
(Daigle and Ellenberg, 2007). When MAPP-nλ is trafficked into the
presynaptic terminals of the labeled neurons, it drags the barcode
mRNA along and thus moves barcode mRNA from the cell body into the
axonal processes of each neuron (Fig. 2c,d). To map the projections of
such barcode-filled neurons, we then simply dissect out potential target
areas as well as tissue at the injection site, and sequence all barcodes
contained in them (Fig. 2e). Matching the barcodes found in each target
area to barcodes in the injection site then constitutes projection map-
ping, as barcodes detected far away from the cell body must have tra-
veled there in the axonal processes of the neuron. MAPseq thus avoids
all manual tracing, and can map the projections of thousands and po-
tentially millions of neurons in parallel at dissection-limited spatial
resolution.

Consequences of viral barcode delivery

For MAPseq to report single neuron projection patterns, every
neuron must be uniquely labeled by a barcode sequence. As viral de-
livery of barcodes to neurons is random, two potential sources of error
must be considered and controlled for. On the one hand, one neuron
might be infected by more than one virus particle and would therefore
be labeled with multiple barcodes. On the other hand, two or more
neurons might get infected by virus particles containing the same bar-
code sequence and would thus be labeled degenerately.

Multiple labeling, where a neuron carries two distinct barcodes, will
result in this neuron effectively being traced twice. Importantly, how-
ever, the tracing information for each of the two barcodes is accurate.
As viral infection, to a first approximation, is a random Poisson process,
multiple labeling will cause an overestimation of the number of traced
neurons in a MAPseq experiment, but will leave the relative abundances
of different projection patterns unchanged. Multiple labeling therefore
slightly alters the interpretation of each recovered barcode, but is lar-
gely inconsequential for MAPseq tracing. Nevertheless, the frequency of
multiple labeling can be controlled by adjusting viral titer and injection
volume, and can be measured by single cell barcode sequencing
(Kebschull et al., 2016a).

Degenerate labeling, where several neurons share the same barcode,
results in loss of single cell resolution. MAPseq cannot distinguish
identically labeled cells, and the aggregate (bulk) projection pattern of
these cells is reported. This is a severe error and must be minimized for
a successful experiment. The rate of degenerate labeling is completely
determined by the number of infections relative to the number of
available barcodes. In the extreme, if more cells are labeled than there
are different barcode sequences in the virus library, degenerate labeling
is certain. As a rule of thumb, labeling a given number of cells with a
virus library 100x larger than this number will result in a degenerate
labeling rate of 1% (for a more quantitative discussion of this issue see
ref (Kebschull and Zador, 2018)). Acceptable error rates vary by the
particular experiment, and can be controlled for by adjusting the size of
the virus library and the number of infected cells per mouse.
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4. Demonstrations of MAPseq to delineate projection architecture

We first applied MAPseq to tracing the projections of locus coer-
uleus (LC) (Kebschull et al., 2016a), a major noradrenergic nucleus
controlling arousal. In contrast the homogeneous LC innervation of
cortex shown by bulk tracing (Schwarz et al., 2015; Waterhouse et al.,
1983), MAPseq revealed idiosyncratic projection patterns of individual
LC neurons, with preferred projection patterns to specific positions
along the anterior-posterior axis of cortex. As a population, LC neurons
tiled cortex with these preferred projection targets. The specificity of LC
projections at single-cell resolution opens the possibility that arousal
signals carried by different LC neurons could differentially act on in-
dividual brain areas (see also refs (Chandler and Waterhouse, 2012;
Chandler et al., 2014)).

Though elucidating the LC output architecture served as a perfect
test case, MAPseq has the potential to provide clarity to even more
complicated questions. We thus turned our attention to the rules un-
derlying cortical wiring. Structurally, cortex is formed from repeated
modules, all tightly interconnected, and each specialized to process
specific information. Still we know very little about how these areas
communicate. According to a popular “one-neuron—one-target”model,
individual neurons project to only a single target area and provide that
area with perfectly tailored information (Nakamura et al., 1993;
Segraves and Innocenti, 1985; Rockland, 2013; Sincich and Horton,
2003; Yamashita et al., 2013). This model suggests that an area like

primary visual cortex (V1) separates the information it receives from
the eyes into independent streams, each processing specific visual fea-
tures (Glickfeld et al., 2013).

Limited by the throughput of classical single neuron tracing, how-
ever, proof for the “one-neuron—one-target” model was lacking. We
used MAPseq to map the projections of hundreds of individual V1
neurons (Han et al., 2018). Contrary to expectation, most neurons
projected to more than one area and broadcasted information to mul-
tiple areas simultaneously. We then investigated the higher-order
structure of the broadcasting neuron population – an analysis possible
only due to the large number of neurons traced. We found that the set of
projection targets of individual neurons was non-random, with some
combinations occurring more often and others less often than expected
by chance. Our results demonstrated the existence of specialized classes
of broadcasting neurons in V1. This outcome challenges the model of
one-to-one lines of information flow in cortex and requires the devel-
opment of more complex functional models of intra-cortical commu-
nication.

5. Scaling up: mapping connectivity networks using sequencing

In MAPseq and traditional bulk tracing, brain mapping is limited to
a single source area, in which the cell bodies of all traced neurons re-
side. Obtaining a global understanding of brain connectivity therefore
requires data collation from many individual experiments, each

Box 1
Approaches to mapping axonal collateralization.

Individual neurons often project to more than one target area in the brain. They thus simultaneously distribute identical sets of information to
different postsynaptic targets, suggesting different underlying computations than if each neuron projected to only one target area. A variety of
methods exist to map such collateralizations (Table 1).

The most common method for mapping the collateralization patterns of neurons in a brain area of interest is multi-color retrograde tracing
(Kuypers et al., 1980; Cavada et al., 1984). Each target area is injected with a retrograde tracer (e.g. CTb (Trojanowski et al., 1982; Wan et al.,
1982), retrobeads (Katz et al., 1984), CAV (Soudais et al., 2001), HSV (Ugolini et al., 1987), AAVretro (Tervo et al., 2016)) that is labeled with
a different color. The area of interest is then imaged, and the number of single, double, etc. labeled neurons quantified. While this approach is
simple and provides cellular spatial resolution in the area of interest and high, injection-limited resolution at the target sites, retrograde tracing
scales poorly with the number of target sites tested. Each retrograde tracer has a limited probability of infecting any given neuron that projects
to the injection site. As individual tracer injections are independent of each other, the probability of observing a neuron labeled by more than
one tracer decreases exponentially, even if all neurons project to all target areas. Multicolor retrograde tracing is therefore usually limited to
testing two, or three target sites and requires careful controls to measure the efficiencies of retrograde labeling. Moreover, no information
about projection strength can be obtained, as retrograde labeling is largely binary.

Collateralization maps in part overcome the limited throughput and lack of projection strength quantification of multi-color retrograde
tracing by pairing retrograde labeling with anterograde tracing (Schwarz et al., 2015; Beier et al., 2015). In this method, a retrograde virus
expressing a recombinase (e.g. CAV-cre; AAVretro-cre) is injected into a single target area. At the same time, a recombinase reporter virus (e.g.
AAV expressing cre-dependent GFP) is injected into the area of interest. All reporter labeled neurons in the brain are therefore known to project
to the injection site of the first virus, and to have their cell bodies in the injection site of the second. Imaging the axonal arbors of the labeled
neurons then allows to efficiently determine the projection targets of neurons that also project to the injection site of the retrograde virus.
Moreover, imaging of axonal arbors allows the discovery of unexpected projection patterns within brain areas. However, like multicolor
retrograde tracing, collateralization mapping is a binary readout of projection to the area injected with retrograde virus, and is limited to
testing pairwise projection pairings.

Single-neuron anterograde tracing avoids the drawbacks of retrograde tracing altogether by labeling only a single neuron per brain with a
cell-filling dye or protein (delivered by electroporation, or viral or dye injection), such that all processes of that neuron can be traced across the
brain, without confusing them for another’s (Kita and Kita, 2012; Ghosh et al., 2012; Economo et al., 2016; Han et al., 2018). The number of
potential target areas does not influence the efficiency of cell filling, and imagining individual axonal arbors provides unprecedented structural
information, allowing the quantification of branch points, angles and geometries. Single-cell tracing, however, is extremely laborious, often
making it difficult to obtain a sufficient number of reconstructed neurons that would reflect the diversity of projection patterns in an area.
Recent technical improvements that allow imaging entire brain volumes at very high resolution now allow labeling dozens of cells in the same
brain, and tracing their processes without confusing one for another (Economo et al., 2016; Gong et al., 2016a; Winnubst et al., 2019).
However, throughput is still limited to low tens of neurons per brain area, and relies on specialized equipment.

MAPseq overcomes the limited throughput of fluorophore-based single neuron tracing, mapping the projections of thousands of neurons
per area (Kebschull et al., 2016a; Han et al., 2018). The increased throughput, however, comes at the cost of lower spatial resolution that is
completely determined by dissection, and cannot easily approach that of imaging. Combining MAPseq with in situ barcode readout in BARseq
addresses the reduced resolution at the injection site, and potentially in target sites.

Each approach comes with certain advantages and disadvantages. When choosing the appropriate tool to map axonal collateralization
patterns, one therefore needs to tradeoff the scale of the mapping (a few select target sites or brain-wide?), the resolution required at each of
the target sites (imaging resolution or injection/dissection?), and the number of cells that need to be examined, based on the biological
question that is to be answered.
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interrogating the projections from a different source area (Oh et al.,
2014; Zingg et al., 2014; Harris et al., 2018). Such an approach, how-
ever, is labor intensive, costly, and suffers from complications in cross-
brain integration and animal-to-animal variability. As a result, global
connectivity atlases exist only for a small set of model species, and even
there are generally restricted to a certain age and sex (Oh et al., 2014;
Zingg et al., 2014; Harris et al., 2018,Markov et al., 2014; Felleman and
Van Essen, 1991). A systematic understanding of the effects of age, sex,
strain or disease mutations on global connectivity therefore lacking.

To overcome these limitations we developed muMAPseq (multi-
source MAPseq), a method that allows brain-wide projection tracing
from hundreds of source areas in the same animal and experiment
(Huang et al., 2018). MuMAPseq draws on the large number of labels
provided by barcodes to uniquely label tens of thousands of cells across
all source areas. This is achieved by injecting the same large pool of
barcoded Sindbis virus into multiple source areas, without regard for
which barcodes are used in which area. After viral expression, all po-
tential target areas and all source areas (note that source areas can be
target areas) are dissected and sequenced. Every barcode is then as-
signed a source area post hoc by abundance, exploiting the observation
that barcodes are much more abundant in cell bodies than in axons.

We applied muMAPseq to mapping the cortico-cortical mesoscale
connectome of two adult male C57BL/6 J animals, recovering ap-
proximately 70,000 uniquely labeled projection neurons across ∼120
source areas and a total of ∼280 target areas in each experiment.
Constrained by low sequencing depth and other technical limitations,
we analyzed area-to-area bulk connectivity data, collapsing projection
patterns across neurons in individually dissected samples. We found
muMAPseq derived connectivity data to be highly reproducible and to
closely match the Allen Connectivity Atlas reference dataset (Oh et al.,
2014). We then proceeded to compare the C57BL/6 J datasets to those
obtained from mapping two male BTBR mice, an inbred mouse strain
notable for the absence of a corpus callosum (McFarlane et al., 2008;
Wahlsten et al., 2003). As expected muMAPseq revealed a complete
absence of contralateral connections in BTBR mice. Despite this large
scale disruption of brain-wide connectivity, however, we found that the
ipsilateral cortical connectome structure was largely maintained of
BTBR mice. Our study for the first systematically mapped the mesoscale
connectomes of different mouse strains, allowing network-level com-
parison. MuMAPseq allows the production of tailor made connectivity
atlases for non-standard model systems in any lab, for a few thousands
of dollars, again at dissection-limited spatial resolution.
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Fig. 1. The number of distinct barcode sequences grows exponentially with
increasing sequence length. As a result, an 18 nucleotide barcode can form
more sequences than there are neurons in the human brain, and a 22 nucleotide
barcode more than there are cells in a human body.
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6. Integration of connectivity data with other modalities

Annotation of connectivity data with each cells’ morphology, tran-
scriptome and activity patterns, i.e. the production of a ‘Rosetta brain’
(Marblestone et al., 2014), is a long standing goal in neuroscience.
Sequencing-based neuroanatomical methods in particular lend them-
selves to such integration, as the barcodes used for connectivity map-
ping are mRNAs, and are thus already in the same modality as the
cellular transcriptome. As a first step in this direction, we recently
combined MAPseq tracing at target sites with single cell RNA sequen-
cing of barcoded cell bodies (Fig. 2f). This study simultaneously re-
vealed the projection patterns and transcriptional state of cells in the
developing somatosensory cortex and thus allowed the identification of
transcriptional modules that correlate with different projections
(Klingler et al., 2018).

While powerful in its own right, it is challenging to expand the
single cell RNA sequencing approach to the Rosetta brain beyond the
integration of transcriptomic and projectional data: Using single cell
RNA sequencing to read out a cell’s transcriptome requires the dis-
sociation of tissue into a suspension of single neurons. All spatial in-
formation is lost, precluding the analysis of spatial domains or gradients
within the sequenced area, as well as investigation of neuronal mor-
phology.

Recent breakthroughs in single molecule in situ RNA detection
methods now provide an attractive alternative pathway towards a
‘Rosetta brain’ (Wang et al., 2018; Lee et al., 2015; Shah et al., 2018). In
these methods, mRNAs are detected in situ in tissue slices, combining
the benefits of sequencing with the utility of spatial information. To
allow the integration of barcode based connectivity information with
other modalities, we recently developed one such method, BARseq, to
determine specifically the sequence and position of barcode mRNAs in
tissue. This achieved by amplifying each barcode in situ and then
reading its sequence out using Illumina sequencing-by-synthesis
chemistry in the tissue slice. In a proof-of-principle experiment, we
combined BARseq of barcoded cell bodies, with MAPseq projection
mapping of the same cells in the primary auditory cortex (Chen et al.,
2018) (Fig. 2g). We were thus able to precisely determine the cell body
location of each barcoded neuron within the auditory cortex, as well as
each neuron’s long-range projection targets. The MAPseq data revealed
a large diversity of projection neuron classes. Intriguingly, when we

related single cell projection patterns of neurons to the cortical layer
they originate from, we found that that only the broad divisions of
projection patterns, but not more subtle differences, were reflected in
clear differences in layer distributions.

BARseq is compatible with other tools for the highly multiplexed
detection of gene expression in situ (Wang et al., 2018; Lee et al., 2015;
Shah et al., 2018) and thus lays the foundation for a Rosetta brain,
where barcode based connectomics readouts are combined with mor-
phological and spatial information, as well as information about tran-
scriptional cell types. Moreover, we envision that in the future it should
be possible to register BARseq’d cells to 2-photon functional imaging
data of the same cells by spatial alignment (compare refs (Ko et al.,
2011; Ko et al., 2013)), adding functional information to connectional
and transcriptomic data. Finally, this approach could be combined with
CRISPR Cas9 generated evolving barcodes (Kalhor et al., 2018; Kalhor
et al., 2016; McKenna et al., 2016; Frieda et al., 2016; Raj et al., 2018;
Alemany et al., 2018; Spanjaard et al., 2018), that record lineage in-
formation, to combine connectional, transcriptomic and functional
data, with developmental information for an integrated view of brain
circuits.

7. Future directions

Barcode based connectomics is a very young field with many future
applications and directions, now that the feasibility of brain mapping
by sequencing is established. Here I will highlight two of my personal
favorites, namely large-scale synaptic connectivity mapping, and com-
parative connectomics (van den Heuvel et al., 2016) of multi-modal
connectomes.

7.1. Synaptic connectivity mapping

While initially proposed as an approach for synaptic connectivity
mapping (Zador et al., 2012), sequencing has so far mainly been ap-
plied to projection mapping. Nevertheless, we established the feasibility
of purely sequencing based connectome mapping at the synaptic level
by SYNseq (Peikon et al., 2014). In this method barcode mRNAs from
pre- and postsynaptic cells are trafficked to the synapse, where they are
bound into a transsynaptic protein-barcode complex. This complex is
then extracted from the brain, and the pre- and postsynaptic barcode

Fig. 2. MAPseq and its extensions. (a) A large
pool of barcoded Sindbis virus particles is in-
jected into a source area. (b) Every infected
neuron is labeled with the barcode carried by
the infecting virus particle. (c) The barcode is
transcribed into mRNA, which is trafficked into
axonal processes by (d) the co-expressed en-
gineered presynpatic protein MAPP-nλ. (e)
Projection mapping then requires the dissec-
tion and sequencing of potential target areas,
to obtain a list of which barcode is found
where, and thus of which neuron projects
where. (f) MAPseq can be combined with
scRNAseq of the barcoded cell bodies to obtain
transcriptional information in addition to the
connectivity info for every cell. (g)
Alternatively, barcodes at the injection site can
be sequenced in situ by BARseq to provide
spatial information to complement MAPseq
connectivity information.
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mRNAs in each complex are joined into barcode-pairs in vitro by droplet
overlap RT-PCR. Each pre-post pairing is then read out by Illumina
sequencing of the barcode-pairs resulting in a connectivity matrix.
Unfortunately, inefficient barcode joining in droplets so far prevented
the application of SYNseq to any biological question. Since the devel-
opment of SYNseq, technological breakthroughs in the field of single
cell sequencing (10X genomics; (Zeisel et al., 2018; Saunders et al.,
2018; Macosko, 2015); split-pool combinatorial barcoding (Rosenberg
et al., 2019; Cao et al., 2017)) have greatly improved our ability to
handle large numbers of individual synaptic complexes with or without
droplets and to manipulate nucleic acids at this scale. Applying these
lessons to SYNseq, or similar approaches based on barcoded synapto-
some preparations, should improve the efficiency of barcode-pair gen-
eration, and allow the sequencing of a connectome.

Combination of synaptic barcode localization with in situ barcode
sequencing (Chen et al., 2018), and expansion microscopy (Chozinski
et al., 2016; Chang et al., 2017; Chen et al., 2015; Wassie et al., 2019)
(ExM) provides an alternative avenue for high-throughput synaptic
connectomics. Here, pre- and post-synaptically localized barcodes
would be detected and read out by in situ sequencing in expanded
tissue. The high effective resolution of ExM in combination with sy-
naptic marker staining, or the restriction of in situ sequencing to sy-
napses, would then allow to map synaptic connectivity by simply as-
sociating proximal barcodes with each other (compare also refs
(Marblestone et al., 2014; Yoon et al., 2017; Underwood, 2016;
Mishchenko, 2010)). Such an approach would combine the throughput
of sequencing based neuroanatomy with the spatial resolution afforded
by ExM. Moreover, this approach is particularly well suited to produce
a synaptic resolution “Rosetta brain”. Connectivity readout can be
readily combined with antibodies that distinguish various kinds of sy-
napses. FISH or in situ sequencing can be added for reading out en-
dogenous gene expression, and the entire ExM volume can be registered
to previously acquired 2-photon Ca2+ imaging datasets, to add activity
information.

7.2. Comparative connectomics

Mapping brain connectivity in individual model systems will un-
doubtedly provide a valuable foundation for all future studies of the
mapped system. Modern brains and their circuits, however, where
shaped by millions of years of evolution. Understanding not only how
brains work, but also how they happened to work in a particular way,
as well as what principles govern brain function, therefore require the
comparison of brain circuits across species. So far such comparisons
were hindered by a lack of high-throughput tools to map circuits.
Sequencing based connectivity mapping now provides an opportunity
to overcome this bottleneck and to provide the data needed in the
emerging field of comparative connectomics (van den Heuvel et al.,
2016). Using MAPseq and related technologies large scale circuits can
be mapped at single cell resolution in various species. Integration of
connectivity data with other modalities such as transcriptomic and
functional data will then facilitate the alignment (Stuart et al., 2018;
Welch et al., 2019) of different circuit elements across species, such that
we can arrive at an understanding how modern circuits evolved from
their evolutionary precursors. Areas of particular interest for com-
parative connectomics include the elaborating visual system in the
mammalian lineage, the evolution of the mammalian cortex and avian
pallium from a common ancestor, and – on shorter evolutionary time-
scales – the circuit changes that might underlie different parenting
behaviors in monogamous versus polygamous mice (Bendesky et al.,
2017).

8. Conclusion

By leveraging the vast combinatorial space of nucleic acid sequences
and the power of modern DNA sequencing approaches, sequencing

based high-throughput neuroanatomy is already providing un-
precedented insights into the structure of the nervous system. A recent
confluence of technological breakthroughs in in situ sequencing, single
cell RNA sequencing and expansion microscopy now place neuroana-
tomical barcoding in a unique position to provide an integrated view of
brain structure and function.
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